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Abstract

Vision-language models have taken up a prominent place as pretrained models
given their robustness to zero-shot performance. One such model is the CLIP
model, which has been adopted as a foundation model for numerous downstream
tasks. This renders the study of the susceptibilities and pitfalls of CLIP an indis-
pensable topic. In this work, we show the bias on language(text) by the CLIP
model by naively writing on the image, and extend this idea to an adversarial attack.
Specifically, we design a generator model that creates an adversarial image condi-
tioned on a corruption text to create visually indistinguishable adversarial samples.
The adversarial attack is shown to reduce the model performance across differ-
ent datasets and shows promise in targetted attacks on CIFAR10 and CIFAR100.
This gives rise to the question, Is language itself the downfall of vision-language
models?

1 Introduction

Pre-training methods from raw text, task-agnostic objectives such as autoregressive and masked
language modelling have proven effective in the domain of NLP. This showed the possibility of
aggregating supervision from web-scaled text over crowd sourced datasets in NLP. CLIP (1) was one
of the pioneering efforts in extending this web-scaled collection of data in the domain of computer
vision. Here, they trained a model using 400 million image and text caption pairs, manifesting text
labels are strong supervision signals for computer vision tasks.

Earlier works in the domain of combining vision and text stemmed from using image meta data as a
bag of words for classification (2)). The research in (3) extended this by using n-gram models instead
of individual words. However, the large scale training with a contrastive learning methodology gave
CLIP excellent zero-shot performance on a wide range of datasets. This has made CLIP takeover as a
foundation model for many downstream tasks.

The advent of CLIP as a foundation model poses certain crucial questions. How robust is CLIP?
Are there weaknesses to it? If so, what kind of weaknesses are they? These questions are critical
to address the possibility of adversarial attacks, which have been shown prevalent in deep learning
models. Various forms of adversarial attacks such as on CNNs (4) Fig. [I] and more recently on the
use of CLIP itself to design an adversarial attack (5) have been studied.

In this work, we design an adversarial attack targeted on the CLIP model. We specifically explore the
use of language itself to craft the adversarial attack on CLIP. We make use of an encoder-decoder
generator architecture that generates an adversary given a corruption text label, such that the adversary
is visually indistinguishable from the original image. The key contributions are as follows:

1. The susceptibility of CLIP model for adversarial attack using pure text superimposed on the
image.
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Figure 1: Adversarial attack example on CNNs (4)

2. A generator model designed using an encoder-decoder architecture, to generate visually
indistinguishable adversarial images, using text as corruption input.

3. Extensive experiments to show that the designed generator can create targetted attack on the
CLIP model, especially on the CIFAR-10 dataset.

2 Related works

Adpversarial attacks on classifiers: Several works have explored the creation of targeted perturbations
to fool models with image inputs. The work (6)) noticed that neural networks misled using malicious
perturbations, which remain imperceptible to humans. Many follow up works (4} [7; [8; O) explore
gradient ascent in pixel domain, solving complex optimizations to create adversarial attacks. However,
these methods were data-dependent and the adversaries were crafted for each sample exclusively,
rendering them inefficient at inference time.

Universal Adversarial Perturbations: The seminal work of (10) introduced the existence of
Universal Adversarial Perturbation (UAP). This single noise vector was capable of deviating a model
prediction from the correct prediction when added to the original input. While, this adversary was
universal, the performance of the UAP was proportional to the number of training samples used for
designing the UAP. A more robust data-agnostic approach that crafts adversarial samples directly
from a generator is proposed by (11).

Generator based adversaries: Another branch of attacks utilize generator modesl to create adver-
sarial attacks. (12)) apply generative adversarial networks to craft visually realistic perturbations
and build distilled network to perform black-box attack. Similarly, train generators to
create adversaries to launch attacks; the former uses target data directly and the latter relies on class
impressions.

Vision-and-Language models and adversarial attacks: Due to the robustness of zero-shot per-
formance, vision and text pretrained models have been adopted to various downstream tasks ().
V-L models provide high-quality aligned visual and textual representations learn from large scale
image-text pairs. (5)) utilizes a prominent such model - CLIP - in its design of an adversarial attack.
On the contrary, we explore the same attribute of alignment between vision and text, to attack the
CLIP model using text using a generative model.

3 Motivation

The robust nature of the CLIP model has led to an extensive use of CLIP in various tasks and projects.
One such was “rclip" (13), that conducted an MS paint-style art competition. Providing various text
prompts such as "cute raccoon using a computer” or "world’s most fabulous monster”, players were
asked to draw a painting. The paintings were scored based on the similarity of the CLIP model image
embedding and the text prompt embedding. An interesting observation that arose was that paintings
with text related to the prompt such as “raccoon" or “monster"”, written on them, boosted the score.

This observation was attributed towards the vision-language pretraining of CLIP, enabling it to
understand the text. However, we pursue this observation under a different lens. We explore the



possibility of using such text additions as corruption (using misleading text) to flip the model
predictions. The idea of this is shown in Figure. 2| Given the original image of the dog, the prediction
of the model is the class "DOG" with over 99% confidence. But with the text "airplane” written on
it, which is quite faint in the background, still leads the model to predict the class "AIRPLANE"
with confidence of nearly 70%. We thus pose the question, is language itself the downfall of CLIP, a
vision-language model?

Further analysis of this observation is described in Section[5] Hence, our hypothesis of creating
a targeted attack using language itself can be shown to be valid. However, since this cannot be
exploited as an adversarial attack as the image has been visually changed, we extend this idea through
a generator model, to create an adversarial image that is indistinguishable from the original image
visually but still is able to fool the CLIP model.
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Figure 2: Comparison between original dog image and corrupted dog image with text of airplane.
The CLIP model gets biased towards the airplane class after text corruption.

4 Methodology

In this section, we first introduce the CLIP Vision-Language model and its zero-shot prediction, and
subsequently we introduce our language written adversary generation approach for the targetted
white-box attack on CLIP models.

41 CLIP

Vision-language model CLIP is trained on large-scale image-text pairs to learn semantics-driven
visual features. Importantly, these models provide “zero-shot" knowledge transfer. We represent
CLIP visual and text encoders as f, and f;, respectively. Given the CLIP model design, we are
able to use CLIP’s zero shot prediction since the class information can be fed to the network in the
form of text. This is done by employing the template prompt (1), where text inputs are generated as
S = {This is a photo of a {class;}}!={, where C is the number of classes. We can then obtain
the zero-shot outputs by computing the cosine similarity between the visual and textual features. The
textual features of a class with highest similarity with visual output f, () is selected as the model’s
final prediction. Formally, based on § = argmaz({f,(x), f:(S))), we get the zero shot prediction.

4.2 Language written adversary generation

From our motivation in Section. [3] we show that the image created by writing a different label than
the original ground truth i.e., the targeted corruption label, makes the prediction of CLIP-VIT-B/16
get biased towards the corruption label. However, such language written image is distinguishable as
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Figure 3: Adversarial image generation from language written image

an adversary by humans. To serve the purpose of an adversarial image from an attacker’s point of
view, which is indistinguishable from the original image by humans, we create the adversarial image
from the language written image. We call this approach, “Language written adversary generation"
and is described in this section.

As the initial step, the corrupted image  is generated from the original image by writing the randomly
chosen corruption label name [/, which is different from the true label name /. We place the text with
the text size s; in a randomly chosen position and a randomly chosen color from the preset list of
positions and colors respectively. The corrupted image is then fed to the generator model G with the
encoder-decoder architecture. Then an L., projection P , with a perceptual budget €, is applied on
the addition of the original image and the noise n, generated from the generator model, to create the
adversarial image 2. Mathematically, the adversarial image can be written as & = P(G(Z) + z) and
the corresponding adversarial text § is created from the template prompt discussed in the Section. [4.1]
as § = This is a photo of a {l}. We train only the generator model with the contrastive loss such
that the adversarial visual feature f,, () attracts corrupt label text feature f;(8) and repels the original
image visual feature f,(z), where f is the CLIP-ViT-B/16 model - the white-box model that we
attack. Formally the loss is formulated as,

L= Lpos + Lpeyg where, )
Lpos =1 = ({fu(2), i (8))) 2
‘C’ﬂeg = ma’x(ov (<fv(§;)7 fv(x» - ¢))7 P = margin 3)

Inference: Our approach facilitates, the targeted adversarial attack from the single-trained generator
model G. At inference time, the target label is chosen and the adversarial image is created in the
same manner as in the training steps. To our knowledge, there is little to no work that performs
targeted adversarial attacks with a single-trained model. With our approach, we show this is feasible,
especially on the highly generalizable CLIP model.

S Experiments and Results

Datasets: We conduct experiments on CIFAR-10 (16), CIFAR-100, Caltech-101 (17). CIFAR-10
contains 10 classes, a total of 50000 training images, and 10000 test images with a resolution of
32 x 32. CIFAR-100 contains 100 classes, with a total of 50000 training images, and 10000 test



images with a resolution of 32 x 32. Caltech-101 consists of 101 classes with around 9000 images
with the size of around 300 x 200.

Experiment protocols: We train the generator model with the AdamW optimizer with the default
parameters except the learning rate chosen either 1le — 3 or 1e — 5. The font size sy, is set such that
(5/32) x h, where h is the height of the image. We use 32 as batch size and trained the models for 20
epochs. We set the perceptual budget € in the L., projection as 0.1 and the margin 1) = 0.2 in our
loss formulation.

5.1 Extended Results of Motivation

We extend the observation shown through Figure 2] with further analysis. We obtain the zero-shot
predictions of the CLIP model and then add the text label of each of the CIFAR-10 classes on all
of the CIFAR-10 images and obtain the zero-shot predictions after corruption. We thus obtain the
zero-shot performance of CLIP with text addition for each of the 10 classes.

The results as seen in Figure. ] and [5]show that the model now predicts a significantly higher number
of images for the corresponding added text label 2 and 5. Confusion matrix shows prediction for zero
shot is considerably good. But, after corrupting CIFAR-10 dataset with labels of class 2 and class
5, more of the other images are now predicted as the corrupted classes which leads to the brighter
columns 2 and 5 in Figure. @ Similarly, Figure. [5]shows how the frequency increases towards a class
by adding a text of a specific class to the images.
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Figure 4: Confusion matrix comparison between zero shot predictions and corruption by adding class
2 and class 5 label as text. The confusion matrix gets biased towards the class when the specific class
label is added as text.
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Figure 5: Comparison of prediction between (a) CLIP zero shot on original CIFAR-10, (b) CIFAR-10

images corrupted with class 2 text (shown by yellow bar), and (c) CIFAR-10 images corrupted with
class 5 text (shown by red bar).

We extend the observation shown in CIFAR-10 to CIFAR-100. The results as seen in Figure. [6] shows
that the model predicts a significantly higher number of images for the corresponding added text
label 2 and 90. The bar plots shows how the frequency increases towards a class by adding a text of a
specific class to the images.
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Figure 6: Comparison between the (a) CLIP zero shot on original CIFAR-100, (b) corrupted CIFAR-
100 images with class 2 text (shown in yellow) and (c) corrupted CIFAR-100 images with class 90
text.

5.2 Adversarial attack results

Comparison with the zero-shot: In Table. we show the effectiveness of our LWAG approach by
comparing the Top-1 and Top-5 accuracy with the zero-shot prediction on the original images. Our
approach is able to make adversarial images such that the prediction with the CLIP-VIT-B/16 yields a
top-1 accuracy of 10.61% from 89.16%, dropping by 78.55% on CIFAR-10 dataset. On CIFAR-100
and Caltech-101 the top-1 accuracy is dropped by 61.77% and 37.12%respectively. Further, we show
the attack accuracy of LWAG approach, which produces adversarial images according to the target
class that is randomly selected. Attack accuracy is the accuracy if the model predicts the label as
the target adversarial label that is used in the targeted attack, i.e., the "target" is now the corruption
text label. We obtain the top-1 attack accuracy of 97.81% on CIFAR-10 dataset with a single trained
generator model.

Transferability to other datasets: We analyse the transferability of the generator model that is
trained with CIFAR-10 dataset and tested on CIFAR-100 and Caltech-101 in Table. 5.2l To observe
the attack accuracy, the target dataset classes are extended with the CIFAR-10 classes. The top-1
accuracy is reduced from 64.40% to 0.96% and the top-1 attack accuracy is 80.06% on the CIFAR-
100. Although in the Caltech-101 the top-1 accuracy is getting reduced slightly by 11.29%, the
top-1 attack accuracy is only 1.03% even with only 10 attack classes, possibly due to the distribution
change.

Table 1: Performance evaluation of adversarial attack with CLIP zero-shot as baseline. The
adversarial attack is better for a higher Attack accuracy and lower Top X accuracy.

Generator Encoder  Learning rate Top 1 Acc. Top 5 Acc. Top 1 Attack Acc. Top 5 Attack Acc.

CIFAR-10 89.16 99.08 - -
CLIP Zero shot CIFAR-100 64.40 86.55 - -
Caltech-101 83.21 96.06 - -
CIFAR-10 10.61 52.2 82.67 97.81
LWAG Attack (Ours) CIFAR-100 2.63 8.81 1.13 5.11
Caltech-101 46.09 70.04 1.26 5.74

Table 2: Transferability of the model across datasets

Transfer Top 1 Acc. Top 5 Ace. Top 1 Attack Ace. Top 5 Attack Acc.
CIFAR-100 zero shot 64.40 86.55 - -
Caltech-101 zero shot 83.21 96.06 - -
CIFAR-10 to CIFAR-100 0.96 6.39 80.06 94.82
CIFAR-10 to Caltech-101 71.92 95.60 1.03 8.86
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Figure 7: The Original image(left column), the generated structured noise(center column) and the
adversarial image generated(right column). The true label and the predicted label are mentioned
beneath each image.

5.3 Analysis and Ablations

Effect of encoder: Table.[5.3|describes the performance of different encoder choices for the generator
model in the architecture design. The generator with native ResNet50 encoder is able to generate
adversaries to decrease the model performance. However, the attack accuracy does not improve
in this setting. Using the CLIP encoder with frozen weights in the generator increases the attack
accuracy while dropping the model performance further. However, the best setting is obtained by
finetuning the CLIP encoder in the generator which yields a Top-1 attack accuracy of 82.67% and
drops the model Top-1 accuracy to 10.61%.

Visualization of generated noise: We show the generated noise and the adversarial image generated
for each input image in Figure.[7]] We observe the obtained adversarial image looks almost same as
the original image yet it can fool the CLIP model.

Attention visualization: We also analyse the impact of the adversarial attacks in terms of the
attention maps of the CLIP encoder. Figure. [ shows the attention maps of the CLIP ViT-b/16
model on zero-shot performance, with text corruption (corrupted image) and on the adversarial image
generated using LWAG attack (Ours). As it can be observed, the zero-shot attention map attends to

Table 3: Encoder choice of Generator model
Generator Encoder Learning rate Top 1 Acc. Top 5 Acc. Top 1 Attack Acc. Top 5 Attack Acc.

Native ResNet50 le -3 57.45 50.07 1.03 8.86
Frozen CLIP ResNet50 le -3 13.70 52.78 15.94 64.05
Unfrozen ResNet50 le—5 11.12 51.68 70.68 94.82

le -3 10.61 52.2 82.67 97.81




the object pretty well. However, when corrupted with text, the attention now shifts towards the text
that has been added (second column). Meanwhile, the attention on the adversarially generated images
can be observed to be scattered and lesser than the original zero-shot attentions.

Zero shot Corrupted Image  Adversarial Image

Figure 8: Attention comparison between the CLIP zero shot on the original image, corrupted image,
and adversarial image. We get attention from the last self-attention layer of the ViT-B/16 architecture.
The zero shot attention on the original image shows much stronger attention on the object of interest
while the attention goes towards the text in the corrupted image. In the adversarial image, attention
strength becomes less compared to the original image.

6 Conclusion

In this work we show the bias of CLIP - a vision-language model - towards text on image, and design
a targeted adversarial attack using text itself for the CLIP model. We propose a generator model
that can create adversarial samples using text as corruption, which are indistinguishable from the
original image for humans, but capable of fooling the CLIP model. We demonstrate the effective use
of language as an adversary for CLIP using extensive experiments with multiple datasets through the
drop in model accuracy and increase in attack accuracy, especially on CIFAR-10 and CIFAR-100.
As part of future works, we will explore the robustness of the adversarial generator across datasets,
perhaps through longer training and stronger conditioning of the generator on the text corruption.
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